Effects of frequency and pulse width on electron density, hydrogen peroxide generation, and perfluorooctanoic acid mineralization in a nanosecond pulsed discharge gas-liquid plasma reactor

Author:

Bulusu Radha Krishna Murthy1ORCID,Yatom Shurik2,Patterson Christopher W.1,Wandell Robert J.1,Locke Bruce R.1ORCID

Affiliation:

1. Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310

2. Princetion Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08536

Abstract

Plasma electron density and temperature were characterized in a continuous flowing gas-liquid film reactor with argon carrier gas by time-resolved optical emission spectroscopy. The plasma parameters were studied as a function of time for varying pulse widths and frequencies. Pulse frequency was varied between 1 and 10 kHz at 16 kV (input voltage) and 40 ns (pulse width) using an Eagle Harbor Technologies, Inc. (EHT) power supply and 5–100 kHz using an Airity Technologies, LLC (AT) power supply. The pulse width was varied between 40 and 200 ns at 16 kV, 2 kHz with the EHT power supply. Optimal frequencies of 5 and 20 kHz were observed for peak electron density with EHT and AT power supplies, respectively. The peak electron density increased with increasing pulse width between 40 and 200 ns using the EHT power supply. Hydrogen peroxide exiting the reactor in the liquid phase increased with discharge power irrespective of the power supply or pulse parameters. Mineralization of 12.5, 50, and 200 ppm perfluorooctanoic acid (PFOA) dissolved in DI water to fluoride (F) correlated to the peak electron density. Glycerol, a liquid-phase hydroxyl radical scavenger, depleted hydrogen peroxide but did not affect PFOA mineralization. CO, a gas-phase hydroxyl radical scavenger, led to a reduction in the formation of F production, suggesting hydroxyl radicals in the gas-liquid film play a necessary, but not singular, role in mineralization of PFOA.

Funder

U.S. Department of Energy

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3