Need for complementary techniques for reliable characterization of MoS2-like layers

Author:

Deshpande Aditya1,Hojo Koki2,Tanaka Koichi1ORCID,Arias Pedro1,Zaid Hicham1,Liao Michael1ORCID,Goorsky Mark1ORCID,Kodambaka Suneel13ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of California Los Angeles 1 , Los Angeles, California 90095

2. Graduate Department of Micro-Nano Mechanical Science and Engineering, Nagoya University 2 , Nagoya, Japan

3. Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University 3 , Blacksburg, Virginia 24061

Abstract

The observation of characteristic A1g and E2g1 peaks, at around 408 and 382 cm−1, respectively, in Raman spectroscopy is considered the evidence of 2H-structured MoS2, probably the most extensively studied transition-metal dichalcogenide. Here, using a combination of x-ray diffraction, x-ray photoelectron spectroscopy, and resonant Raman spectroscopy, we show that the detection of A1g and E2g1 modes in Raman spectra alone may not necessarily imply the presence of MoS2. A series of Mo–S films, ≈ 20-nm-thick, are grown on single-crystalline Al2O3(0001) substrates at 1073 K as a function of H2S partial pressure, pH2S (= 0, 0.01%, 0.1%, and 1% of total pressure) via ultra-high vacuum dc magnetron sputtering of a Mo target in 20 m Torr (2.67 Pa) Ar/H2S gas mixtures. In pure Ar discharges and with pH2S up to 0.1%, i.e., pH2S ≤ 2.67 × 10−3 Pa, we obtain body centered cubic (bcc), 110-textured films with lattice parameter a increasing from 0.3148 nm (in pure Ar) to 0.3151 nm (at pH2S = 2.67 × 10−4 Pa), and 0.3170 nm (at pH2S = 2.67 × 10−3 Pa), which we attribute to increased incorporation of S in the Mo lattice. With 1% H2S, i.e., pH2S = 2.67 × 10−2 Pa, we obtain 000l oriented 2H-structured MoS2.0±0.1 layers. Raman spectra of the thin films grown using 0.1% (and 1%) H2S show peaks at around 412 (408) and 380 cm−1 (382 cm−1), which could be interpreted as A1g and E2g1 Raman modes for 2H-MoS2. By comparing the Raman spectra of MoS2.0±0.1 and Mo:S thin films, we identify differences in A1g and E2g1 peak positions and intensities of defect-sensitive peaks relative to the A1g peaks that can help distinguish pure MoS2 from non-stoichiometric MoS2−x and multiphase Mo:S materials.

Funder

Air Force Office of Scientific Research

National Science Foundation

Japanese Student Service Organization

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3