4H-SiC layer with multiple trenches in lateral double-diffused metal-oxide-semiconductor transistors for high temperature and high voltage applications

Author:

Sohrabi-Movahed Amir1ORCID,Orouji Ali Asghar1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Semnan University , Semnan 35131-19111, Iran

Abstract

In this paper, we present a novel lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor for high-temperature and high breakdown voltage applications. The key idea in our study is replacing a 4H-SiC layer in a part of the buried oxide region (BOX) to reduce temperature effects. Moreover, the top of the 4H-SiC layer has multiple trenches to increase the breakdown voltage. These multiple trenches have been filled with an N-type silicon material. So, we call the proposed structures as multiple trenches 4H-SiC LDMOS (MTSiC-LDMOS). The proposed device is simulated by a two-dimensional ATLAS simulator, and we have shown that the maximum lattice temperature decreases and the breakdown voltage improves by optimization of multiple trenches in the 4H-SiC region. Also, the results show that the current flow and specific on-resistance have improved. Therefore, the MTSiC-LDMOS structure is more reliable than a conventional LDMOS (C-LDMOS) for high-temperature and high breakdown voltage applications.

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3