Affiliation:
1. Department of Nuclear, Plasma, and Radiological Engineering, Center for Plasma-Material Interactions, University of Illinois at Urbana-Champaign 1 , Urbana, Illinois 61801
2. Department of Electrical and Electronic Engineering, Jashore University of Science and Technology 2 , Jashore 7408, Bangladesh
Abstract
In extreme ultraviolet (EUV) lithography, tin droplets evaporate and subsequently coat various surfaces including the collector mirrors. To clean off the tin, a hydrogen plasma is often used, but as a result, an unstable by-product, stannane (SnH4) is formed. The physicochemical characteristics of this gas, its formation in a plasma process, and its interaction with various materials have not been explored and understood completely. Here, the electron ionization mass spectrum of SnH4 is presented. All ten natural abundance isotopes were observed experimentally for each fragment, i.e., Sn+, SnH+, SnH2+, and SnH3+. Density functional electronic structure theory was used to calculate the optimized ground state geometries of these gas phase species and their relative stabilities and helped explain the absence of SnH4+ in the observed signals. The density of the liquid, its cracking pattern, and the surface morphology of its deposits were examined. The surface of the deposited tin film resulting from the decomposition and subsequent oxidation was characterized by x-ray photoelectron spectroscopy. The main species found at the surface were metallic tin and tin (II) oxide (SnO). The detailed characterization of stannane should help correctly identify it in EUV lithographic processes and develop approaches in the future to mitigate its decomposition and redeposition on the collector mirrors or vacuum chamber walls.
Funder
Ebara Hatakeyama Memorial Foundation
ASML
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献