Beneficial and detrimental entanglement for quantum battery charging

Author:

Gyhm Ju-Yeon1,Fischer Uwe R.1ORCID

Affiliation:

1. Department of Physics and Astronomy, Center for Theoretical Physics, Seoul National University , Seoul 08826, Korea

Abstract

We establish a general implementation-independent approach to assess the potential advantage of using highly entangled quantum states between the initial and final states of the charging protocol to enhance the maximum charging power of quantum batteries. It is shown that the impact of entanglement on power can be separated from both the global quantum speed limit associated with an optimal choice of driving Hamiltonian and the energy gap of the batteries. We then demonstrate that the quantum state advantage of battery charging, defined as the power obtainable for given quantum speed limit and battery energy gap, is not an entanglement monotone. A striking example we provide is that, counterintuitively, independent thermalization of the local batteries, completely destroying any entanglement, can lead to larger charging power than that of the initial maximally entangled state. Highly entangled states can thus also be potentially disadvantageous when compared to product states. We also demonstrate that taking the considerable effort of producing highly entangled states, such as W or k-locally entangled states, is not sufficient to obtain quantum-enhanced scaling behavior with the number of battery cells. Finally, we perform an explicit computation for a Sachdev–Ye–Kitaev battery charger to demonstrate that the quantum state advantage allows the instantaneous power to exceed its classical bound.

Funder

National Research Foundation of Korea

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3