Bandgap engineering of indium gallium nitride layers grown by plasma-enhanced chemical vapor deposition

Author:

Emanuel Thomet Jonathan1ORCID,Kamlesh Singh Aman1,Nelly Rouèche Mélanie1,Toggwyler Nils1,Haug Franz-Josef1ORCID,Christmann Gabriel2,Nicolay Sylvain23ORCID,Ballif Christophe12ORCID,Wyrsch Nicolas1ORCID,Hessler-Wyser Aïcha1ORCID,Boccard Mathieu1ORCID

Affiliation:

1. Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab), Institute of Electrical and Micro Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchâtel, Switzerland

2. Sustainable Energy Center, Centre Suisse d’Electronique et de Microtechnique SA, 2002 Neuchatel, Switzerland

3. Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada

Abstract

This paper reports on the fabrication of In[Formula: see text]Ga[Formula: see text]N (InGaN) layers with various compositions ranging from InN to GaN using a cost-effective low-temperature plasma-enhanced chemical vapor deposition (PECVD) method and analyzes the influence of deposition parameters on the resulting films. Single-phase nanocrystalline InGaN films with crystallite size up to 30 nm are produced with deposition temperatures in the range of 180–250 [Formula: see text]C using the precursors trimethylgallium, trimethylindium, hydrogen, nitrogen, and ammonia in a parallel-plate type RF-PECVD reactor. It is found that growth rate is a primary determinant of crystallinity, with rates below 6 nm/min producing the most crystalline films across a range of several compositions. Increasing In content leads to a decrease in the optical bandgap, following Vegard’s law, with bowing being more pronounced at higher growth rates. Significant free-carrier absorption is observed in In-rich films, suggesting that the highly measured optical bandgap (about 1.7 eV) is due to the Burstein–Moss shift.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3