Growth of p-doped 2D-MoS2 on Al2O3 from spatial atomic layer deposition

Author:

Maas André1ORCID,Mistry Kissan2ORCID,Sleziona Stephan1ORCID,Alshehri Abdullah H.3ORCID,Asgarimoghaddam Hatameh2,Musselman Kevin P.2ORCID,Schleberger Marika1ORCID

Affiliation:

1. Universität Duisburg-Essen, Fakultät für Physik and CENIDE 1 , Germany

2. Department of Mechanical and Mechatronics Engineering, University of Waterloo 2 , Canada

3. Department of Mechanical Engineering, Prince Sattam bin Abdul Aziz University 3 , Alkharj 11942, Saudi Arabia

Abstract

In this letter, we report on the synthesis of monolayers of MoS2 via chemical vapor deposition directly on thin films of Al2O3 grown by spatial atomic layer deposition. The synthesized monolayers are characterized by atomic force microscopy as well as confocal Raman and photoluminescence spectroscopies. Our data reveal that the morphology and properties of the 2D material differ strongly depending on its position on the substrate. Close to the material source, we find individual flakes with an edge length of several hundred microns exhibiting a tensile strain of 0.3 %, n-doping on the order of ne = 0.2 × 1013 cm−2, and a dominant trion contribution to the photoluminescence signal. In contrast to this, we identify a mm-sized region downstream, that is made up from densely packed, small MoS2 crystallites with an edge length of several microns down to the nanometer regime and a coverage of more than 70 %. This nano-crystalline layer shows a significantly reduced strain of only <0.02 %, photoluminescence emission at an energy of 1.86 eV with a reduced trion contribution, and appears to be p-doped with a carrier density of nh = 0.1 × 1013 cm−2. The unusual p-type doping achieved here in a standard chemical vapor deposition process without substitutional doping, post-processing, or the use of additional chemicals may prove useful for applications.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Ontario Ministry of Research and Innovation

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3