Numerical study of the effects of discharge parameters on capacitively coupled plasma in a magnetic field

Author:

Yan Minghan1ORCID,Wu Huanhuan1ORCID,Wu Hao2ORCID,Peng Yanli3ORCID,Yang Shali1ORCID

Affiliation:

1. College of Science, University of Shanghai for Science and Technology 1 , Shanghai 200093, China

2. School of Electronics and Information Engineering, Hubei University of Science and Technology 2 , Xianning 437100, China

3. School of Science, East China University of Technology 3 , Nanchang 330013, China

Abstract

The impact of electrode spacing, power supply voltage, radio frequency, and gas pressure on capacitively coupled plasma discharge under both weak and strong magnetic fields is investigated by using a one-dimensional implicit particle-in-cell/Monte Carlo collision simulation. Simulation results indicate that under both weak and strong magnetic field conditions, plasma density increases with the increase in these discharge parameters. However, the principle of density increase under weak and strong magnetic field conditions is slightly different. The strong magnetic field plays a crucial role in strongly constraining electrons. Under weak magnetic field conditions, the mutual transition between stochastic heating and ohmic heating can be observed, while under strong magnetic field conditions, ohmic heating predominantly prevails. Furthermore, the simulation results also indicate that a strong magnetic field can effectively reduce the voltage threshold for the transition from the α mode to the γ mode. The strong magnetic field strongly confines secondary electrons near the sheath, allowing them to interact multiple times with the sheath and acquire higher energy, thereby making the γ mode more likely to occur.

Funder

National Natural Science Foundation of China

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3