Near-surface electronic structure in strained Ni-ferrite films: An x-ray absorption spectroscopy study

Author:

Saha S.1ORCID,Knut R.2,Gupta A.3ORCID,Radu F.4ORCID,Luo C.45ORCID,Karis O.2ORCID,Arena D. A.6ORCID

Affiliation:

1. Department of Physics, Ashoka University 1 , Sonipat, Haryana 131029, India

2. Department of Physics and Astronomy, Uppsala University 2 , SE-75120 Uppsala, Sweden

3. Department of Chemistry and Biochemistry, The University of Alabama 3 , Tuscaloosa, Alabama 35487

4. Helmholtz-Zentrum Berlin für Materialien und Energie 4 , Albert-Einstein-Strasse 15, 12489 Berlin, Germany

5. Institute of Experimental Physics of Functional Spin Systems, Technical University of Munich 5 , James-Franck-Strasse 1, 85748 Garching b. München, Germany

6. Department of Physics, University of South Florida 6 , Tampa, Florida 33620

Abstract

We report on the x-ray absorption spectra (XAS) and x-ray magnetic circular dichroism (XMCD) of a series of NiFe2O4 (Ni ferrite) films grown on symmetry matched substrates and measured in two geometries: out-of-plane and near in-plane. The Ni ferrite films, grown by pulsed laser deposition, are epitaxial and the substrates used (ZnGa2O4, CoGa2O4, MgGa2O4, and MgAl2O4) introduce a systematic variation in the lattice mismatch between the substrate and the film. Modeling of the XAS and XMCD spectra, both measured with the surface sensitive total electron yield mode, indicates that the Ni2+ cations reside on the octahedrally coordinated lattice sites in the spinel structure. Analyses of the Fe XAS and XMCD spectra are consistent with Fe3+ cations occupying a subset of the octahedral and tetrahedral sites in the spinel oxide lattice with the addition of a small amount of Fe2+ located on octahedral sites. The Ni2+ orbital to spin moment ratio (μℓ/μs), derived from the application of XMCD sum rules, is enhanced for the substrates with a small lattice mismatch relative to NiFe2O4. The results suggest a path for increasing the orbital moment in NiFe2O4 by applying thin film growth techniques that can maintain a highly strained lattice for the NiFe2O4 film.

Funder

National Science Foundation

Swedish Fulbright Commission

USF Nexus Initiative

Science and Engineering Research Board

Axis Grant - Ashoka University

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Vetenskapsrådet

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3