Fine-tuned magnetic nanobubbles for magnetic hyperthermia treatment of glioma cells

Author:

Li Bin1,Han Yuexia2,Liu Yang1,Yang Fang1ORCID

Affiliation:

1. State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China

2. Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Magnetic nanoparticle (MNP) induced magnetic hyperthermia has been demonstrated as a promising technique for the treatment of brain tumor. However, lower heating efficiency resulting from low intratumoral accumulation of magnetic nanomaterials is still one of the significant limitations for their thermotherapeutic efficacy. In this study, we have designed a nanobubble structure with MNPs decorated on the shell, which leads to the improvement of magnetocaloric performance under an alternating magnetic field. First, the phospholipid coupled with MNPs as the shell to be self-assembled magnetic nanobubbles (MNBs) was fabricated by a temperature-regulated repeated compression self-assembly approach. Then, the optimal magnetic heating concentration, electric current parameters for producing the magnetic field, and the number of magnetic heating times were investigated for tuning the better magnetoenergy conversion. Finally, the well-defined geometrical orientation of MNPs on the nanobubble structure enhanced hypothermia effect was investigated. The results demonstrate that the MNBs could promote the endocytosis of magnetic nanoparticles by glioma cells, resulting in better therapeutic effect. Therefore, the controlled assembly of MNPs into well-defined bubble structures could serve as a new hyperthermia agent for tumor therapy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Project 333 of Jiangsu Province

Space Application System of China Manned Space Program

Publisher

American Vacuum Society

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Materials Science,Biomaterials,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3