Feasibility study of dative bond formation for bilayer silicon growth under excessive strain

Author:

Vishal Kumar1ORCID,Ji Zhonghang1ORCID,Zhuang Yan1ORCID

Affiliation:

1. Department of Electrical Engineering, Wright State University , Dayton, Ohio 45435

Abstract

Energy bandgap opening has been found in low-buckle bilayer silicene under tensile in-plane strain. Practically such substantial in-plane strain could be provided from the substrates. The intense interfacial covalent bonds ensure an in-plane lattice-matching expitaxial growth, but at the same time impose a challenge in forming low-buckle two-dimensional films. We performed a theoretical study using density function theory to investigate the feasibility of growing bilayer silicon under excessive in-plane strain on various substrates. By the insertion of an air gap, dative bonds have been found at the interface on the substrates with the preferred polarized surface. The interactions of the transferred electrons from the surface-terminating metallic atoms of the substrates and the electron sea in the bilayer silicon was observed. The strength of the dative bond is reduced to about ∼0.05% of the Ga–Si covalent bond in the absence of the air gap. Preservation of substantial in-plane strain has been obtained in the bilayer silicon, resulting in a low-buckle bilayer silicon with opened energy bandgap up to ∼75 meV.

Funder

Air Force Research Laboratory

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GeC/SiCx van der Waals heterojunction: Applications for water splitting and solar cell;Materials Science in Semiconductor Processing;2024-10

2. Strain-tuned optical properties of bilayer silicon at midinfrared wavelengths;Journal of Vacuum Science & Technology B;2024-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3