Modeling and control of L-type network impedance matching for semiconductor plasma etch

Author:

Rodriguez Carlos1ORCID,Viola Jairo2ORCID,Chen YangQuan2ORCID,Alvarez Joaquin1ORCID

Affiliation:

1. Ensenada Center for Scientific Research and Higher Education 1 , Ensenada 22860, Mexico

2. School of Engineering, University of California 2 , Merced, California 95343

Abstract

The plasma process plays a pivotal role in the semiconductor industry, facilitating the creation of transistors and memory storage cells. This fourth state of matter is achieved by energizing a gas with radio-frequency electrical power, initiating and maintaining a stable plasma during the process cycles. Given that plasma behaves as an impedance component, an impedance-matching network becomes essential for optimizing power transfer from the source to the load (plasma). While various control strategies have been proposed for different network configurations, such as L, T, and Π networks, our work focuses on the L-type network due to its simplicity and extensive application in this domain. Several significant challenges have been identified in the existing literature, including slow dynamics, a non-monotonic decline in the reflected power, and substantial deviation in the capacitors’ path. These issues collectively impact the overall performance of the matching control system. In this article, we present a new methodology to obtain a nonlinear state-space model of the matching network for its analysis and design a proportional-integral combined with feedforward control and a control Lyapunov-barrier function to assess their effectiveness in achieving convergence to the desired matching value and guiding the path of the capacitors. These approaches aim to mitigate the recurring issues caused by capacitors moving in the wrong direction, thus improving the stability and efficiency of the impedance-matching process over time.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3