Large-area 1D selective emitter for thermophotovoltaic applications in the mid-infrared

Author:

Oh Minsu1ORCID,Grossklaus Kevin1ORCID,Vandervelde Thomas E.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155

Abstract

Two- or three-dimensionally patterned subwavelength structures, also known as metamaterials, have the advantage of arbitrarily engineerable optical properties. In thermophotovoltaic (TPV) applications, metamaterials are commonly used to optimize the emitter’s radiation spectrum for various source temperatures. The output power of a TPV device is proportional to the photon flux, which is proportional to the emitter size. However, using 2D or 3D metamaterials imposes challenges to realizing large emitters since fabricating their subwavelength features typically involves complicated fabrication processes and is highly time-consuming. In this work, we demonstrate a large-area (78 cm2) thermal emitter. This emitter is simply fabricated with one-dimensional layers of silicon (Si) and chromium (Cr), and therefore, it can be easily scaled up to even larger sizes. The emissivity spectrum of the emitter is measured at 802 K, targeting an emission peak in the mid-infrared. The emissivity peak is ∼0.84 at the wavelength of 3.75  μm with a 1.2  μm bandwidth. Moreover, the emission spectrum of our emitter can be tailored for various source temperatures by changing the Si thickness. Therefore, the results of this work can lead to enabling TPV applications with higher output power and lower fabrication cost.

Funder

National Science Foundation

United States Office of Naval Research

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 1D Thermophotovoltaic Emitter: Performance Comparison in N2 Ambient and Air;2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM);2023-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3