Affiliation:
1. Walker Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712
Abstract
Periodic nanostructures have important applications in nanophotonics and nanostructured materials as they provide various properties that are advantageous compared to conventional solid materials. However, there is a lack of metrology techniques that are suitable for large-scale manufacturing, as the traditional tools used in nanotechnology have limited throughput and depth resolution. In this work, we use spectroscopic scatterometry as a fast and low-cost alternative to characterize the porosity of three-dimensional (3D) periodic nanostructures. In this technique, the broadband reflectance of the structure is measured and fitted with physical models to predict the structure porosity. The process is demonstrated using 3D periodic nanostructures fabricated using colloidal phase lithography at various exposure dosages. The measured reflectance data are compared with an optical model based on finite-difference time-domain and transfer-matrix methods, which show qualitative agreement with the structure porosity. We found that this technique has the potential to further develop into an effective method to effectively predict the porosity of 3D nanostructures and can lead to real-time process control in roll-to-roll nanomanufacturing.
Funder
National Science Foundation
national nanotechnology coordinating Infrastructure
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献