Characterization of porosity in periodic 3D nanostructures using spectroscopic scatterometry

Author:

Lee Kwon Sang1ORCID,Chien Kun-Chieh1ORCID,Groh Barbara1ORCID,Chen I-Te1ORCID,Cullinan Michael1ORCID,Chang Chih-Hao1ORCID

Affiliation:

1. Walker Department of Mechanical Engineering, The University of Texas at Austin , Austin, Texas 78712

Abstract

Periodic nanostructures have important applications in nanophotonics and nanostructured materials as they provide various properties that are advantageous compared to conventional solid materials. However, there is a lack of metrology techniques that are suitable for large-scale manufacturing, as the traditional tools used in nanotechnology have limited throughput and depth resolution. In this work, we use spectroscopic scatterometry as a fast and low-cost alternative to characterize the porosity of three-dimensional (3D) periodic nanostructures. In this technique, the broadband reflectance of the structure is measured and fitted with physical models to predict the structure porosity. The process is demonstrated using 3D periodic nanostructures fabricated using colloidal phase lithography at various exposure dosages. The measured reflectance data are compared with an optical model based on finite-difference time-domain and transfer-matrix methods, which show qualitative agreement with the structure porosity. We found that this technique has the potential to further develop into an effective method to effectively predict the porosity of 3D nanostructures and can lead to real-time process control in roll-to-roll nanomanufacturing.

Funder

National Science Foundation

national nanotechnology coordinating Infrastructure

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3