Effects of electron irradiation on graphene drums

Author:

Ojo Ibikunle1ORCID,Hathaway Evan1,Li Jianchao2,Gonzalez Roberto1ORCID,Jiang Yan1,Cui Jingbiao1,Perez Jose1ORCID

Affiliation:

1. Department of Physics, University of North Texas 1 , Denton, Texas 76203

2. Materials Research Facility, VP Research and Innovation Office, University of North Texas 2 , Denton, Texas 76203

Abstract

Using a scanning electron microscope, we irradiate graphene drums with electrons at an energy of 20 keV and a dosage of about 1.58 × 1017 electrons/cm2. The drums consist of graphene exfoliated in ambient air over holes having a diameter of 4.6 μm and etched into an SiO2 substrate. After irradiation, we observe that the drum’s suspended monolayer (ML) region has a ratio of the Raman D peak height, ID, to the Raman G peak height, IG, as high as 6.3. In contrast, the supported ML on the SiO2 substrate has an ID/IG ratio of 0.49. Previous studies have shown that graphene drums containing air can leak in a vacuum at a low rate. We attribute the high ID/IG ratio of the suspended ML to the air that may be in the drums. We propose that the air produces much adsorbed water on the ML, resulting in a high average defect density during irradiation. We present Raman maps of the full-width-at-half maximum, position, and height of the G, 2D, D, and D’ peaks before and after irradiation and maps of ID/IG and ID/ID’. We anneal the drums at temperatures from 50 to 215 °C and find that ID/IG significantly reduces to 0.42. The annealing data are analyzed using an Arrhenius plot. We also find that ID/ID’ depends on annealing temperature and has values ≥8, in the range expected for sp3 defects, for ID/IG ≤ 3.9. This irradiation method may help achieve high average defect densities in ML graphene, imparting novel and potentially valuable properties.

Funder

National Science Foundation

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3