One-step formation of ZrON thin film on surface of carbon fine particles for membrane electrode assembly

Author:

Aihara Yudai12ORCID,Iida Takashi12ORCID,Kodama Kakeru12ORCID,Iwata Hiroshi12ORCID,Sekiya Takao12ORCID

Affiliation:

1. Department of Physics, Yokohama , 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

2. National University , 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

Abstract

Zirconium nitride and oxynitride films were deposited on alumina or carbon particles by reactive sputtering using a magnetron sputtering apparatus with a Zr hollow cylindrical target and a vibrating equipment with heating capability. The vibrating equipment developed in this study was effective if the particles are spherical and highly monodisperse. Uniform film deposition was achieved over the entire surface of highly monodisperse spherical alumina particles using the vibrating equipment during deposition. Pure ZrN crystalline layers was deposited under Ar and N2 gas flows with heating on XC-72 carbon powder particles removed adsorbed oxygen. Energy dispersive x-ray spectroscopy mapping analysis for deposited XC-72 carbon particles showed ubiquitous film deposition on agglomerated particles regardless of vibration during sputtering. Uniform film deposition with vibrating equipment was achieved on the entire surface of CGB-10 particles with more spherical and monodisperse than XC-72 but precipitated crystalline phase depended on unintentional oxygen chemisorbed on the particles. Addition and increase in flow rate of oxygen to the sputtering gas resulted in the formation of desired crystalline phase, Zr2ON2, Zr7O8N4, and monoclinic ZrO2, precipitated in the film using CGB-10 particles with chemisorbed oxygen removed. Current density for oxygen reduction reaction measured for MEA made from CGB-10 particles with ZrON-based crystals deposited was larger than that for thin film deposited on a carbon plate substrate.

Funder

Japan Society for the Promotion of Science

Publisher

American Vacuum Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3