Phase transition behavior in nanostructured VO2 with M1, M2, and R phases observed via temperature-dependent XRD measurements

Author:

Nishikawa Kazutaka1,Yoshimura Masamichi1,Watanabe Yoshihide1ORCID

Affiliation:

1. Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan

Abstract

Vanadium dioxide (VO2) exhibits a metal-insulator phase transition at approximately 70 °C. Two different crystal structures, M1 and M2 phases, in the insulating state have been reported. The M2 phase is expected to be a Mott insulator, whereas the M1 phase is expected to act as a band insulator. It is important to clarify the origin and transition properties of the M2 phase. In this study, we fabricated VO2 nanostructures via sputtering deposition and subsequent lamp annealing at various O2 pressures. Temperature-dependent XRD measurements revealed that the nanostructured VO2 exhibits the M2 phase in temperatures just before the phase transition from M1 to R (metal state) during the heating process. The ratio of V5+/(V4+ + V5+) in nanostructured VO2 was estimated from XPS results; an increase in this ratio resulted in the broadening of the temperature range of the M2 phase. Furthermore, in the cooling process, direct phase transitions from R to M1 were observed. Structural changes are likely to occur in different pathways during heating and cooling. Our findings should contribute to the identification of the phase transition mechanism and to the development of a Mott field-effect transistor that utilizes nanostructured VO2 in the M2 phase.

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3