Series resonance effects of a variable inductor termination on the nonpowered electrode in capacitively coupled plasmas

Author:

Moon Ho-Jun1ORCID,Lee Jae-Won1,Lee Ho-Won1ORCID,Lim Yeong-Min1ORCID,Jung Jiwon1ORCID,Chung Chin-Wook1ORCID

Affiliation:

1. Department of Electrical Engineering, Hanyang University , 222 Wangsimni-ro, Seongdong-gu, Seoul 133–791, Republic of Korea

Abstract

The effect of LC series resonance on the voltage of a nonpowered electrode in a capacitively coupled plasma is investigated by connecting a variable inductor to the nonpowered electrode. Two distinct LC series resonances are observed while varying the reactance of the variable inductor. The first resonance occurs between an inductor and a vacuum variable capacitor, thereby resulting in the voltage of the nonpowered electrode approaching zero. The reactance between the inductor and the vacuum variable capacitor is minimized at this resonance, thereby enabling the nonpowered electrode voltage to remain close to 0 V even with increased applied RF power. The second resonance is a series resonance between the variable inductor and the nonpowered electrode sheath, leading to a maximization of the nonpowered electrode voltage. The reactance between the variable inductor and the nonpowered electrode sheath is minimized at this resonance. As the applied RF power increases under the second resonance condition, the voltage of the nonpowered electrode increases, thereby resulting in a significant increase in the maximum electron density by approximately 35%. This increase in the electron density at the second resonance can be attributed to enhanced stochastic heating due to the sharp increase in the sheath voltage.

Funder

Ministry of Trade, Industry and Energy

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3