Flexible refractive and diffractive micro-optical films shaped by fitting aspherical microprofiles with featured aperture and depth and their spatial arrangement for imaging applications

Author:

Huang Wenhai12,Liu Taige12,Wang Zhe12,Yuan Xiangdong12,Zhang Bo12,Hu Chai123,Liu Kewei12,Shi Jiashuo12,Zhang Xinyu12ORCID

Affiliation:

1. National Key Laboratory of Science & Technology on Multispectral Information Processing, Huazhong University of Science & Technology, Wuhan 430074, China

2. School of Artificial Intelligence & Automation, Huazhong University of Science & Technology, Wuhan 430074, China

3. Innovation Institute, Huazhong University of Science & Technology, Wuhan 430074, China

Abstract

Patterned surface microstructures over a common silicon wafer are constructed by a single-mask ultraviolet (UV) photolithography and a dual-step wet potassium hydroxide etching. Oriented surface contours such as aspherical refractive profiles, diffractive phase steps, or even the composite appearance shaped by combining both refractive and diffractive microprofiles can be accurately predicted and finely configured through computational fitting. This critical operation involves a careful adjustment of the location of silicon microholes with suitable apertures and concave depths so as to outline a needed square microwindow map defined by the single-mask UV photolithography. This approach leads to an aspherical surface or phase steps with required roughness based on a greedy algorithm developed in-house. The obtained micro-optical films can be effectively used to transform common laser beams with a typical Gaussian profile into patterned beams with various complicated wavefronts. The proposed method highlights a low-cost development of adaptive optical imaging by constructing relatively complicated wavefront or objective circumstances for quantitatively evaluating imaging efficiency. The technology should find typical applications in antilaser interference or attack imaging.

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3