Interlayer registry effects on the electronic and piezoelectric properties of transition metal dichalcogenide bilayers

Author:

Likith S. R. J.1,Brennecka Geoff L.2ORCID,Ciobanu Cristian V.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Colorado School of Mines 1 , Golden, Colorado 80401

2. Department of Metallurgical and Materials Engineering, Colorado School of Mines 2 , Golden, Colorado 80401

Abstract

Transition metal dichalcogenides (TMDC) are currently drawing significant interest from the scientific community as 2D materials that have intrinsically semiconducting bandgaps. One additional advantage of TMDCs for discovering and developing materials with novel electronic, electromechanical, or optoelectronic properties is that both layer composition and registry can be readily tailored. To understand how such tailoring can expand the range of properties, here we used density functional theory calculations to determine the electronic structure and piezoelectric properties of bilayer TMDC heterostructures based on MoX2 and WX2, where X can be S, Se, or Te. For identical layers with no misorientation with respect to one another, we find that the registry of the two layers can change the bandgap type (direct vs indirect), as well as its value (by ≈0.25 eV). We report similar conclusions for bilayer heterostructures in which the composition of the two layers is different. Interlayer registry also has a pronounced effect on piezoelectric properties as the piezoelectric coefficients of the two layers either nearly cancel each other or add up to yield enhanced values for the associated TMDC bilayer heterostructures. These results may serve as a guide for enhancing electronic and piezoelectric properties by stacking TMDC layers.

Funder

Division of Materials Research

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3