Affiliation:
1. Department of Physics, Chemistry and Biology (IFM), Linköping University , Linköping SE-581 83, Sweden
Abstract
Transition metal nitride alloys possess exceptional properties, making them suitable for cutting applications due to their inherent hardness or as protective coatings due to corrosion resistance. However, the computational demands associated with predicting these properties using ab initio methods can often be prohibitively high at the conditions of their operation at cutting tools, that is, at high temperatures and stresses. Machine learning approaches have been introduced into the field of materials modeling to address the challenge. In this paper, we present an active learning workflow to model the properties of our benchmark alloy system cubic B1 Ti0.5Al0.5N at temperatures up to 1500 K. With a minimal requirement of prior knowledge about the alloy system for our workflow, we train a moment tensor potential (MTP) to accurately model the material’s behavior over the entire temperature range and extract elastic and vibrational properties. The outstanding accuracy of MTPs with relatively little training data demonstrates that the presented approach is highly efficient and requires about two orders of magnitude less computational resources than state-of-the-art ab initio molecular dynamics.
Funder
VINNOVA
Knut och Alice Wallenbergs Stiftelse
International Interdisciplinary Laboratory for Advanced Functional Materials, Linköpings Universitet
Swedish e-Science Research Centre