All-dry free radical polymerization inside nanopores: Ion-milling-enabled coating thickness profiling revealed “necking” phenomena

Author:

Cheng Yifan1ORCID,Khlyustova Alexandra1ORCID,Yang Rong1ORCID

Affiliation:

1. Cornell University, Robert Frederick Smith School of Chemical and Biomolecular Engineering, 6-44 Ho Plaza, Ithaca, New York 14853

Abstract

Conformal coating of nanopores with functional polymer nanolayers is the key to many emerging technologies such as miniature sensors and membranes for advanced molecular separations. While the polymer coatings are often used to introduce functional moieties, their controlled growth under nanoconfinement could serve as a new approach to manipulate the size and shape of coated nanopores, hence, enabling novel functions like molecular separation. However, precise control of coating thickness in the longitudinal direction of a nanopore is limited by the lack of a characterization method to profile coating thickness within the nanoconfined space. Here, we report an experimental approach that combines ion milling (IM) and high-resolution field emission scanning electron microscopy (FESEM) for acquiring an accurate depth profile of ultrathin (∼20 nm or less) coatings synthesized inside nanopores via initiated chemical vapor deposition (iCVD). The enhanced capability of this approach stems from the excellent x–y resolution achieved by FESEM (i.e., 4.9 nm/pixel), robust depth ( z) control enabled by IM (step size as small as 100 nm with R2 = 0.992), and the statistical power afforded by high-throughput sampling (i.e., ∼2000 individual pores). With that capability, we were able to determine with unparalleled accuracy and precision the depth profile of coating thickness and iCVD kinetics along 110-nm-diameter nanopores. That allowed us to uncover an unexpected coating depth profile featuring a maximum rate of polymerization at ∼250 nm underneath the top surface, i.e., down the pores, which we termed “necking.” The necking phenomenon deviates considerably from the conventionally assumed monotonous decrease in thickness along the longitudinal direction into a nanopore, as predicted by the diffusion-limited kinetics model of free radical polymerization. An initiator-centric collision model was then developed, which suggests that under the experimental conditions, the confinement imposed by the nanopores may lead to local amplification of the effective free radical concentration at z ≤ 100 nm and attenuation at z ≥ 500 nm, thus contributing to the observed necking phenomenon. The ion-milling-enabled depth profiling of ultrathin coatings inside nanopores, along with the initiator-mediated coating thickness control in the z-direction, may serve to enhance the performance of size-exclusion filtration membranes and even provide more flexible control of nanopore shape in the z dimension.

Funder

National Science Foundation

National Institute of Food and Agriculture

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3