A dialog on the fate of information in black hole evaporation

Author:

Perez Alejandro1ORCID,Sudarsky Daniel2ORCID

Affiliation:

1. Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

2. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico D.F. 04510, Mexico

Abstract

We present two alternative perspectives for the resolution of Hawking's information puzzle in black hole evaporation. The two views are deeply contrasting, yet they share several common aspects. One of them is the central role played by the existence of the interior singularity (whose physical relevance is implied by the singularity theorems of Penrose) that we expect to be replaced by a region described by a more fundamental quantum gravity formulation. Both views rely on the notion that the standard effective quantum field theoretic perspective would require some deep modifications. In this respect, both of our scenarios are deeply influenced by ideas that Penrose has advocated at various times and, thus, serves to illustrate the lasting influence that his deep thinking on these and related matters continues to have on the modern thinking about fundamental aspects of both quantum theory and gravitation. Despite that, there is of course no claim that Penrose would agree with any of the concrete proposals that will be discussed here.

Funder

Consejo Nacional de Ciencia y Tecnología

DGAPA UNAM

Foundational Questions Institute

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference125 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3