Immersion ellipsometry for the uncorrelated determination of ultrathin film thickness and index of refraction: Theory and examples

Author:

Jafari Samira1ORCID,Johs Blaine2ORCID,Linford Matthew R.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, Brigham Young University 1 , Provo, Utah 84602

2. Film Sense LLC 2 , Lincoln, Nebraska 68522

Abstract

Immersion ellipsometry can break the well-known correlation between optical constants and thicknesses of ultrathin (<5–10 nm) films, allowing both to be determined. In immersion ellipsometry, ellipsometric data is acquired in air and liquid ambients, and the data sets are combined in the analysis. The contrast in index between the liquid and film adds information to the analysis that breaks the correlation between the film thickness and refractive index that exists for air-only measurements. We describe the theory and practice of immersion ellipsometry. We also discuss the use of multiwavelength immersion ellipsometry to measure the thicknesses and optical constants of two thin films: native oxide on silicon and an alkyl monolayer on that native oxide. The average thicknesses of the native oxide and chloro(dimethyl)octadecylsilane (CDMOS) monolayer were 1.526 ± 0.027 nm and 1.968 ± 0.057 nm, and their average indices of refraction at 633 nm were 1.519 ± 0.005 and 1.471 ± 0.004, respectively. The native oxide and CDMOS monolayer were also characterized with x-ray photoelectron spectroscopy (XPS) and contact angle goniometry. Both the XPS C 1 s peak and the water contact angle increased substantially after monolayer deposition. While immersion ellipsometry has been known for decades, its use has been limited, maybe due to a lack of awareness of the technique and/or the need to immerse the sample surface in a liquid that could be destructive if the sample is not compatible with the liquid. As ultrathin films become widely used in science technology, immersion ellipsometry should increase in importance.

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3