Cloud Cover Avoidance in Satellite Systems

Author:

Narayanan Shreeram,Jagtap Soham,Fonseca Arnold Johnson,Sonkusare Reena

Abstract

<span id="docs-internal-guid-41420025-7fff-e714-8d51-73d40b2b7340"><span>Cloud cover is primarily a major difficulty in the acquisition of optical satellite images and has a negative impact on the efficiency of data scheduling. Along with data scheduling, the computational power required is also increasing. Recent advances in an extensive variety of technologies have resulted in an explosion in the amount of data. Different methodologies have been used for  Object detection in remote sensing images but it remains a challenge because of its diversity and complex backgrounds. In this paper, a cloud cover detection technique based on Convolutional Neural Networks is proposed for remote sensing images. The classifying model uses a neural network where the underlying features are used to classify the image as useful or not. Results illustrate that the proposed method outperforms other state of the art methods that exist. Once classified, it will be transmitted from the satellite to the earth giving the researchers only convenient pictures to study. This will help to save a massive amount of computation, expense and time.</span></span>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of Classification Algorithm to Determine Potential Fishing Area Based on Coral Reefs;2022 International Conference on Electrical Engineering, Computer and Information Technology (ICEECIT);2022-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3