Author:
Bourouhou Abdelhamid,Jilbab Abdelilah,Nacir Chafik,Hammouch Ahmed
Abstract
<em>The heart is the organ that pumps blood with oxygen and nutrients into all body organs by a rhythmic cycle overlapping between contraction and dilatation. This is done by producing an audible sound which we can hear using a stethoscope. Many are the causes affecting the normal function of this most vital organ. In this respect, the heart sound classification has become one of the diagnostic tools that allow the discrimination between patients and healthy people; this diagnosis is less painful, less costly and less time consuming. In this paper, we present a classification algorithm based on the extraction of 20 features from segmented phonocardiogram “PCG” signals. We applied four types of machine learning classifiers that are k- Near Neighbor “KNN”, Support Vector Machine “SVM”, Tree, and Naïve Bayes “NB” so as to train old features and predict the new entry. To make our results measurable, we have chosen the PASCAL Classifying Heart Sounds challenge, which is a rich database and is conducive to classifying the PCGs into four classes for dataset A and three classes for dataset B. The main finding is about 3.06 total precision of the dataset A and 2.37 of the dataset B.</em>
Publisher
International Association of Online Engineering (IAOE)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献