Abstract
<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>The idea of recognizing human emotion through speech (SER) has recently received considerable attention from the research community, mostly due to the current machine learning trend. Nevertheless, even the most successful methods are still rather lacking in terms of adaptation to specific speakers and scenarios, evidently reducing their performance when compared to humans. In this paper, we evaluate a largescale machine learning model for classification of emotional states. This model has been trained for speaker iden- tification but is instead used here as a front-end for extracting robust features from emotional speech. We aim to verify that SER improves when some speak- er</span><span>’</span><span>s emotional prosody cues are considered. Experiments using various state-of- the-art classifiers are carried out, using the Weka software, so as to evaluate the robustness of the extracted features. Considerable improvement is observed when comparing our results with other SER state-of-the-art techniques.</span></p></div></div></div>
Publisher
International Association of Online Engineering (IAOE)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献