Android Malware Detection through Machine Learning Techniques: A Review

Author:

Christiana Abikoye Oluwakemi,Gyunka Benjamin Aruwa,Noah AkandeORCID

Abstract

<p class="0abstract">The open source nature of Android Operating System has attracted wider adoption of the system by multiple types of developers. This phenomenon has further fostered an exponential proliferation of devices running the Android OS into different sectors of the economy. Although this development has brought about great technological advancements and ease of doing businesses (e-commerce) and social interactions, they have however become strong mediums for the uncontrolled rising cyberattacks and espionage against business infrastructures and the individual users of these mobile devices. Different cyberattacks techniques exist but attacks through malicious applications have taken the lead aside other attack methods like social engineering. Android malware have evolved in sophistications and intelligence that they have become highly resistant to existing detection systems especially those that are signature-based. Machine learning techniques have risen to become a more competent choice for combating the kind of sophistications and novelty deployed by emerging Android malwares. The models created via machine learning methods work by first learning the existing patterns of malware behaviour and then use this knowledge to separate or identify any such similar behaviour from unknown attacks. This paper provided a comprehensive review of machine learning techniques and their applications in Android malware detection as found in contemporary literature.</p>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3