A Crowdsourced Gameplay for Whole-Genome Assembly via Short Reads

Author:

Gamage Gihan,Perera Indika,Meedeniya DulaniORCID,Welivita Anuradha

Abstract

Next-generation sequencing has revolutionized the field of genomics by producing accurate, rapid and cost-effective genome analysis with the use of high throughput sequencing technologies. This has intensified the need for accurate and performance efficient genome assemblers to assemble a large set of short reads produced by next-generation sequencing technology. Genome assembly is an NP-hard problem that is computationally challenging. Therefore, the current methods that rely on heuristic and approximation algorithms to assemble genomes prevent them from arriving at the most accurate solution. This paper presents a novel approach by gamifying whole-genome shotgun assembly from next-generation sequencing data; we present "Geno", a human-computing game designed with the aim of improving the accuracy of whole-genome shotgun assembly. We evaluate the feasibility of crowdsourcing the problem of whole-genome shotgun assembly by breaking the problem into small subtasks. The evaluation results, for single-cell Escherichia coli K-12 substr. MG1655 with a read length of 25 bp that produced 144,867 game instances of mean 25 sequences per instance at 40x coverage indicate the feasibility of sub-tasking the problem of genome assembly to be solved using crowdsourcing.<br /><br />

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3