Application of Data Mining Technology Based on Wireless Sensor Networks in Oceanographic Forecasting

Author:

Zhai Wei

Abstract

This paper aims to present a desirable prediction method for oceanographic trends. Therefore, an online monitoring scheme was prepared to collect the accurate oceanographic hydrological data based on wireless sensor network (WSN) and computer technology. Then, the data collected by the WSN were processed by support vector regression algorithm. To obtain the most important parameters of the algorithm, the particle swarm optimization was introduced to search for the global optimal solution through the coopetition between the particles. After that, an oceanographic hydrological data collection and observation system was created based on the hydrological situation of New York harbour. Then, the traditional support vector regression and the proposed method were applied to predict the oceanographic trends based on water temperature, salinity and other indices. The results show that the proposed algorithm enhanced the data utilization rate of the WSN, and achieved good prediction accuracy. The research provides important insights into the application of advanced technology in oceanographic forecast.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3