An Improved Principal Component Analysis in the Fault Detection of Multi-sensor System of Mobile Robot

Author:

Zhou Zhaihe,Zhang Qianyun,Zhao Qingtao,Chen Ruyi,Zeng Qingxi

Abstract

<p class="0abstract"><span lang="EN-US">To cope with the fault detection in dynamic conditions of inertial components in the mobile robots, an improved principal component analysis (PCA) method was proposed. This work took a five gyroscopes redundancy allocation model to realize the measurement of the attitude. It is hard to distinguish the fault message from dynamic message in dynamic system that results in false alarm and missing inspection, so we firstly used the parity vector to preprocess the measurement data from the sensors. A fault was detected when the preprocessed data was dealt with PCA method. The effectiveness of the improved PCA method introduced in this paper was verified by comparing fault detection capabilities of conventional PCA method under the dynamic conditions of the step fault. The results of the simulation and experimental verification of the method was expected to contribute to the fault detection and improve the accuracy and reliability of the multi-sensors system in dynamic conditions.</span></p>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3