Deep Learning Approach for Detecting Cardiovascular Arrhythmias in Seven Lead ECG Signal from Holter

Author:

Omar Hashim Yahya ,Vladimir Vitalievich Alekseev ,Denis Vyacheslavovich Lakomov ,Olga Vladimirovna Fomina ,Irina Sergeevna Iskevich ,Elena Alexandrovna Frolova ,Elena Yurievna Kutimova

Abstract

 Cardiac arrhythmias are abnormalities caused by irregularities in the heart’s electrical conduction system. Cardiovascular diseases (CVD) have been identified as the leading cause of death worldwide. Premature ventricular contraction (PVC) is one of these diseases. It is an arrhythmia that can be linked to a several heart diseases that affect between 40% and 75% of the population. Ventricular bigeminy occurs when one or two premature beats are detected on an electrocardiogram when there is ventricular contraction between two normal heartbeats or trigeminy. The appearance of ventricular bigeminy or trigeminy rhythms is related to angina. Myocardial infarction, hypertension, and congestive heart failure are also possible conditions. Based on deep learning, this paper proposes creating a robust approach for automatically detecting and classifying cardiovascular arrhythmias in long-term electrocardiogram (ECG) recordings from halters based on deep learning (DL). We present a convolutional neural network (CNN) and long-short-time memory (LSTM) model that identifies cardiovascular arrhythmias. We have designed and implemented the proposed model using Python. The model was trained and validated on a database that includes a total of 17 long-recorded ECG signals (24 h) from 17 subjects, which were obtained from Yfa Hospital. The signals were recorded with seven leads holter. The CNN classifier achieved an accuracy of 91.14% as a final result, validated through a 10-fold cross-validation. Moreover, the proposed model was found to be capable of analyzing ECG recordings to classify multiple cardiovascular arrhythmias in the ECG record signals efficiently.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3