A Boosted Evolutionary Neural Architecture Search for Timeseries Forecasting with Application to South African COVID-19 Cases

Author:

Akinola Solomon OluwoleORCID,Qingguo Wang,Olukanmi Peter,Tshilidzi Marwala

Abstract

In recent years, there has been an increase in studies on time-series forecasting for the future occurrence of disease incidents. Improvements in deep learning approaches offer techniques for modelling long-term temporal relationships. Nonetheless, this design practice is rigorously painstaking, prone to errors, and requires human expertise. The advent of feature enrichment with automatic architecture search typically optimises the discovery of new neural architectures applicable in domains such as time-series modelling. The main methodological contribution of this study is an approach for time-series forecasting using feature-enriched filters and an evolutionary neural architecture search with sequence-to-sequence gated recurrent units (GRU-Seq2Seq). This is applied to the prediction of daily cases of coronavirus disease in South Africa. The highly pathogenic coronavirus pandemic incident data was modelled with filters, optimised hyper-parameter search trials and an evolutional neural algorithm. The proposed model was benchmarked against ARIMA and SARIMA. The model predicted trends for 30, 60 and 90-day horizons and evaluated them for 7, 14 and 31 days. Simulation results demonstrate that observed daily case counts with added filters and evolutionary search optimisation for forecasting improve performance accuracy. Generally, the proposed bFilter+GRU-Seq2Seq with optimal search configuration outperformed ARIMA and SARIMA with lower error scores and higher performance metrics, with an R2 score of 7.48E-01 for a 30-day forecast horizon.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Health Liability;Artificial Intelligence and the Law;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3