Electronic Prototype of Autonomous Learning for the Crossing of Pedestrians with Visual Disabilities in Lima

Author:

Luque-Milera Benjamin,Tocas-Taipe Alcides Alejandro,Florian-Amaro Estefano Jose Luis,Estrada-Ventocilla Axel,Salinas-Carbajal Brahyan Fabián,Sanchez-Ramirez Jhony Miguel,Cabana-Cáceres Maritza,Castro-Vargas CristianORCID

Abstract

Difficulties related to vehicular chaos and obstacles in public spaces hinder the orientation of visually impaired individuals, limiting their autonomy and exposing them to potential accidents. Considering these factors, the objective was to develop a prototype that facilitates autonomous learning by utilizing different electronic components. The aim is to ensure the safe movement of blind pedestrians, promote self-reliance, and minimize the risk of accidents. The proposed prototype is based on the concept of implementing intelligent traffic lights that detect the presence of pedestrians, allowing for safe crossing for both pedestrians and vehicles. The proposed circuit utilizes two ESP32 modules. One module is placed in the traffic light and configured as a Bluetooth master to transmit signals. It is also equipped with an ultrasonic sensor. The other module is located in the user’s wristband and configured as a Bluetooth slave to receive signals. It is also equipped with a horn. The communication between the modules has been developed using the C programming language for microcontrollers in the Arduino IDE development environment. A master-slave communication system was implemented, resulting in the constant reporting of the distance between the pedestrian and the sidewalk within the pedestrian crossing by the ultrasonic sensor. This system controls the safe crossing by regulating the traffic lights. The HC-SR04 ultrasonic sensor can detect distances ranging from 2 cm to 450 cm. Therefore, the prototype can be used as a foundation for future advancements in various cities and contexts, ultimately benefiting blind pedestrians by improving their mobility.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3