Reducing Delay and Packets Loss in IoT-Cloud Based ECG Monitoring by Gaussian Modeling

Author:

Fadhel Ahmed A.ORCID,Hasan Hamid M.ORCID

Abstract

Abstract— Health monitoring based on the internet of things (IoT) and cloud computing is regarded as a hot topic to research. However, such systems often face issues with delay and throughput due to the large amount of data that must be transmitted from sensors to the cloud. One important type of data for health monitoring is Electrocardiogram (ECG) signals, which generate a large amount of data to be transmitted. This research treats this problem by modelling these signals in order to reduce their size using Gaussian approximation. The cloud server is an MQTT broker to which the sensors publish their data via a gateway. The Gaussian parameters are calculated in the gateway, which act as a Fog layer, before published to the broker. The monitoring devices can subscribe to the broker and access the transmitted data. Our experiments were conducted using the MIT–BIH dataset and a real broker (HiveMQ). The results showed that the system was able to significantly reduce delay in transmitting data and prevent loss of information. Without using the Gaussian approximation technique, the system was only able to monitor a limited number of patients (17 for Qos1 and 23 for Qos0) without losing information. However, when using the Gaussian approximation model with five functions, the system was able to monitor many more patients (78 for Qos1 and 100 or more for Qos0) without losing any data.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arrhythmia Detection Based on New Multi-Model Technique for ECG Inter-Patient Classification;International Journal of Online and Biomedical Engineering (iJOE);2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3