An Efficient Preprocessing Technique for Multimodality Breast Cancer Images

Author:

Y. K. AnupamaORCID,S. Amutha,Ramesh Babu D. R.

Abstract

On average, one in every eight women is diagnosed with breast cancer during their lifetime, and accounts for 14% of cancers in women. Since early diagnosis could improve treatment outcomes and longer survival times for patients, it is absolutely necessary to develop techniques to classify lesions within breast cancer mammograms and ultrasound images. The main goal is to determine the class of tumor present within the image, which is pivotal in diagnosing breast cancer patients. In this paper, we propose an Sobel-Canny-Gabor(SCG) model, which is a hybrid model that implements three different edge detection filters; Sobel filter, Gabor filter, and Canny filter. This model is used to enhance the appearance of the mammogram and ultrasound images, which is then fed into a classification model. Through classification, there could be a potential improvement in the results of the overall classification. Post-classification, the model is then evaluated using the metric Peak Signal-to-Noise Ratio (PSNR), which measures the quality between the original image and the compressed image.On average, one in every eight women is diagnosed with breast cancer during their lifetime, and accounts for 14% of cancers in women. Since early diagnosis could improve treatment outcomes and longer survival times for patients, it is absolutely necessary to develop techniques to classify lesions within breast cancer mammograms and ultrasound images. The main goal is to determine the class of tumor present within the image, which is pivotal in diagnosing breast cancer patients. In this paper, we propose an Sobel-Canny-Gabor(SCG) model, which is a hybrid model that implements three different edge detection filters; Sobel filter, Gabor filter, and Canny filter. This model is used to enhance the appearance of the mammogram and ultrasound images, which is then fed into a classification model. Through classification, there could be a potential improvement in the results of the overall classification. Post-classification, the model is then evaluated using the metric Peak Signal-to-Noise Ratio (PSNR), which measures the quality between the original image and the compressed image.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3