Simulation of the Core Technology of a Greenhouse-Monitoring System Based on a Wireless Sensor Network

Author:

Zhou Yuhong,Xie Yunfang,Shao Limin

Abstract

To solve the topology structure of a greenhouse environment-monitoring system and the ductility of joints, this study presents a design of a greenhouse-monitoring system based on the ZigBee wireless sensor network (WSN). The hardware and software designs of the network node are provided, and the process of the ZigBee network coordinator is elucidated. The system uses the microcontroller unit PIC18F4620CC2420 wireless transceiver module to send and receive data. Data from temperature and humidity sensors are collected using an inter-integrated circuit bus through the ZigBee network transmission to the monitoring platform. Test results show that the system has the advantages of having a simple structure, flexible nodes, and low power consumption. It can effectively monitor the temperature and humidity in a wireless environment. WSNs considerably help in greenhouse environment monitoring. The use of advanced technology to control greenhouse temperature and humidity can satisfy the optimum growth environment of greenhouse crops and effectively improve the yield and quality of crops. The application of WSNs in greenhouse monitoring is significant to the development of modern and precision agriculture in China.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3