Towards an Evolution of E-Learning Recommendation Systems: From 2000 to Nowadays

Author:

Souabi SoniaORCID,Retbi Asmaâ,Idrissi Mohammed Khalidi,Bennani Samir

Abstract

In e-learning, recommendation systems have proven to be highly efficient for improving learners' performance and knowledge. They can manage the different pedagogical resources and simplify the workload for the instructor and learners as well. Throughout the years, recommendation systems in e-learning have wit-nessed a major evolution since the 2000s. Several aspects have been developed, including techniques involved, test data (...). In this respect, this paper analyses the evolution of recommendation systems in e-learning since 2000 with a focus on the evolution sides. It furthermore addresses areas not fully addressed to date. A set of recommendation systems is identified and then analysed in order to define techniques used, as well as algorithms deployed.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perceived usefulness of mobile devices in assessment: a comparative study of three technology acceptance models using PLS-SEM;Journal of New Approaches in Educational Research;2024-01-18

2. A Comprehensive Study On Personalized Learning Recommendation In E-Learning System;IEEE Access;2024

3. Desarrollo de apps de realidad virtual y aumentada para enseñanza de idiomas: un estudio de caso;RIED-Revista Iberoamericana de Educación a Distancia;2023-10-12

4. Applying Machine Learning & Knowledge Discovery to Intelligent Agent-Based Recommendation for Online Learning Systems;2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT);2023-03-17

5. Infraestructura necesaria para facilitar una educación superior online de calidad;HUMAN REVIEW. International Humanities Review / Revista Internacional de Humanidades;2023-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3