A Hierarchical Learning Model based on Deep Learning and its Application in a SPOC and Flipped Classroom

Author:

An Xiangming,Qu Chengliang

Abstract

In accordance with the progressive knowledge-to-ability transformation laws, a hierarchical learning model composed of cognitive layer, application layer, and design layer was created and applied to college computer teaching. This model was used to facilitate the deep learning among students through the association establishment, step-by-step understanding, and comprehensive application of new and old knowledge. In the teaching design process, the “5-problem” teaching, which centered on “student–problem–activity–resource,” was conducted and applied to the “Small Private Online Course (SPOC) + flipped classroom.” The teaching result was assessed using the proposed hierarchical classification method. Results demonstrate that the improved teaching model remarkably enhances the ability of noncomputer major students to solve the practical problems encountered in their specialties by virtue of computational thinking through the data analysis of evaluation results and students’ survey feedback. The students obviously speak more highly of the improved teaching model than the traditional blended teaching in the aspects of teaching content organization, learning effect, integration degree with the specialty and satisfaction. The degree of their participation in the flipped classroom reached as high as 90%.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. English Distance Teaching Based on SPOC Classroom and Online Mixed Teaching Mode;Scalable Computing: Practice and Experience;2024-01-04

2. Facilitating creativity, collaboration, and computational thinking in group website design: a concept mapping-based mobile flipped learning approach;International Journal of Mobile Learning and Organisation;2024

3. The Application of SPOC Teaching Model in Japanese Language Teaching;Applied Mathematics and Nonlinear Sciences;2024-01-01

4. Research and Design of SPOC Teaching Service Platform Based on Big Data Technology and AHP;Proceedings of the 2023 4th International Conference on Education, Knowledge and Information Management (ICEKIM 2023);2023

5. Professional Training and Tutorial Mode of Social Media SPOCS under the Background of “1+x” Certificate System;Mathematical Problems in Engineering;2022-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3