Academic Performance Prediction Method of Online Education using Random Forest Algorithm and Artificial Intelligence Methods

Author:

Yu Jing

Abstract

In order to improve the teaching quality of online education, the prediction method of students' online academic performance has been studied. First, the learning analysis, artificial intelligence (AI) and other related theoretical concepts are analyzed and introduced. Then, the decision tree of single classification algorithm and the random forest (RF) of ensemble learning algorithm are analyzed, and the academic performance prediction model of online education is constructed by RF algorithm. Finally, the data of education platform is used for empirical analysis to verify the reliability and practicability of the academic performance prediction algorithm of online education. The connotation of learning analysis, the role and elements of learning analysis in the learning process are introduced. The algorithm principle of RF and decision tree is analyzed. By using the idea of information entropy and discretization, the continuous variables are processed to improve the fitting degree of the algorithm. The model is evaluated by empirical analysis, and the test accuracy of several different algorithms is compared. It is found that the prediction accuracy of the RF algorithm is more than 90%, which shows that the prediction method can help teachers and students to carry out better teaching and learning activities, so as to better improve students' ability to master knowledge. It is hoped that the result can provide some reference for the management of students' learning behavior and the optimization of teachers' teaching strategies in online learning activities

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Autism Spectrum Disorder Classification in Different Age Groups using Machine Learning Models;International Journal of Online and Biomedical Engineering (iJOE);2024-06-20

2. Future research recommendations for transforming higher education with generative AI;Computers and Education: Artificial Intelligence;2024-06

3. Design of English Online Teaching System using Adaptive Crossover Mutation based Genetic Algorithm;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

4. Study of the Effectiveness of 5G Mobile Internet Technology to Promote the Reform of English Teaching in the Universities and Colleges;Journal of Cases on Information Technology;2024-04-26

5. Analysis of Student Performance to Predict Career Specialization using Random Forest Data Mining Technique;Proceedings of the 2024 9th International Conference on Intelligent Information Technology;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3