Investigation in Customer Value Segmentation Quality under Different Preprocessing Types of RFM Attributes

Author:

Taher Nesma Mahmoud,Elzanfaly Doaa,Salama Shaimaa

Abstract

Customer value segmentation helps retailers to understand different types of customers, develops long term relationship with them, and hence increases their value and loyalty. This study aims to evaluate the quality of customer value segmentation based on two methods of preprocessing the RFM attributes. K-means clustering algorithm is used for the customer value segmentation based on the scored RFM and the actual value of RFM. The quality of the clustering results is tested using the Sum of Squared Error (SSE). Results obtained show that using the actual value of RFM in customer segmentation reduces the clustering error (SSE) and enhances the accuracy of segmentation than using the scored RFM.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximizing Customer Base By Forecasting The Most Profitable Customers Using Logistic Regression;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

2. Customer clustering using K-means clustering: Supporting customer relationship management system;INTERNATIONAL CONFERENCE ON MECHANICAL MATERIALS AND RENEWABLE ENERGY (ICMMRE 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3