DR-LL Gan: Diabetic Retinopathy Lesions Synthesis using Generative Adversarial Network

Author:

Hameed Abbood Saif,Hamed Haza Nuzly Abdull,Mohd Rahim Mohd Shafry,M. Alaidi Abdul Hadi,Alrikabi Haider Th.Salim

Abstract

— Diabetic Retinopathy (DR) is a serious consequence of diabetes that seriously impact on the eyes and is a leading cause of blindness. If the lesions in DR arise in the central portion of the fundus, they may result in significant vision loss, which we refer to as Diabetic Macular Edema (DME). Deep learning (DL) techniques are commonly used utilized in ophthalmology for discriminative tasks such as diabetic retinopathy or age-related macular degeneration (AMD) diagnosis. Deep learning techniques typically need huge picture data sets for deep convolutional neural networks (DCNNs) training, it should be graded by human specialists. According to international protocol, it is classified into five severity categories. However, improving a grading model for high generality needs a significant quantity of balanced training data, which is challenging to obtain, especially at high levels of severity. Typical techniques for data augmentation, in many applications of deep learning in the retinal image processing domain, the difficulty of access to huge annotated datasets and legal concerns about patient privacy are limiting issues. As a result, the concept of creating synthetic retinal pictures that are indistinguishable from actual data has garnered more attention. GANs have been certain to be an effective framework for creating synthetic databases of anatomically accurate retinal fundus pictures. GANs, in particular, have garnered increasing attention in ophthalmology. in this article, we present a loss-less generative adversarial network (DR-LL GAN) to generate good resolution fundus pictures that May be adjusted to include random grading and information about the lesion. As a result, large-scale generated data may be used to train a DR grading and lesion segmentation model with more appropriate augmentation. Our model experiments evaluated on IDRID and MESSIDOR datasets, it's obtained a discrimination loss of 0.69374 and a generation loss of 1.10438, as well as a segmentation accuracy of 0.9840 in our tests. This might support in the optimization techniques of the neural network design and in computer-aided screening of medical picture, thus increasing diagnostic reliability for clinical assessment in the future of sophisticated technological healthcare.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trends in using deep learning algorithms in biomedical prediction systems;Frontiers in Neuroscience;2023-11-09

2. An Efficient System for Diagnosis of Human Blindness Using Image-Processing and Machine-Learning Methods;International Journal of Online and Biomedical Engineering (iJOE);2023-08-01

3. Watermarking in Medical Image;International Journal of Online and Biomedical Engineering (iJOE);2023-05-16

4. Efficient Deep Learning Approach for Detection of Brain Tumor Disease;International Journal of Online and Biomedical Engineering (iJOE);2023-05-16

5. Intrusion Detection in Wireless Body Area Network using Attentive with Graphical Bidirectional Long-Short Term Memory;International Journal of Online and Biomedical Engineering (iJOE);2023-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3