Abstract
The objective of the research work is to accurately segment multiple sclerosis (MS) lesions in brain Magnetic Resonance Imaging (MRI) of varying sizes and also to classify its types. Designing effective automatic segmentation and classification tool aid the doctors in better understanding MS lesion progressions. In meeting research challenges, this paper presents Noise Invariant Convolution Neural Network (NICNN). The NICNN model is efficient in the detection and segmentation of MS lesions of varying sizes in comparison with standard CNN-based segmentation methods. Further, this paper introduced a new cross-validation scheme to address the class imbalance issue by selecting effective features for classifying the type of MS lesion. The experiment outcome shows the proposed method provides improved Dice Similarity Coefficient (DSC), Positive Predicted Value (PPV), and True Positive Rate (TPR) value compared to the state-of-art CNN-based MS lesion segmentation method. Further, achieves better accuracy in classifying MS lesion types compared to standard MS lesion type classification models.
Publisher
International Association of Online Engineering (IAOE)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Histopathological Image Classification Using Convolutional Neural Networks for Detection of Metastatic Breast Cancer in Lymph Nodes;International Journal of Online and Biomedical Engineering (iJOE);2024-02-14
2. Convolutional Neural Network-based image tamper detection with Error Level Analysis;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24