Discrimination of the Skin Microcirculatory Status Using Photoacoustic Technique and Long Short-term Memory Network

Author:

Chua Hui Ling,Huong Audrey

Abstract

Measuring oxygen in blood with a standard imaging method is challenging. Most of the conventional imaging systems presented outcomes of microcirculatory change measurement as signals of complex forms. This leads to analytical insufficiency due to the complicated and visually unnoticeable features of the signals. For that reason, there is a great need to explore the use of photoacoustic (PA) method and deep learning technique for the task. This work presents the use of a deep network containing long short-term memory (LSTM) units for temporal features extraction and classification of skin microcirculatory status. The model was trained using a limited number of PA signals. One way ANOVA test was used to evaluate changes in the PA signals collected under different experiment condition. The results showed a strong statistical significance between the means of two groups (ρ < 0.05). The mean ± standard deviation (SD) final validation accuracies of the trained model is given by 95.60 ± 0.47 % with inclusion of augmented data, which showed better performance than the case without the augmentation method. The results of the testing set showed a considerably good classification accuracy, specificity, and sensitivity given by 97.6 %, 100 %, and 83.3%. The future of this work includes improvement of the network architecture to include more convolutional layers for searching patterns in the features extracted.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early Detection of Diabetic Foot Ulcers: Deep Learning Classification using Thermograms (AlexNet Algorithm);2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC);2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3