Combining Artificial Intelligence and Image Processing for Diagnosing Diabetic Retinopathy in Retinal Fundus Images

Author:

Al-hazaimeh Obaida M.,Abu-Ein Ashraf,Tahat Nedal,Al-Smadi Ma’moun,Al-Nawashi Malek

Abstract

Retinopathy is an eye disease caused by diabetes, and early detection and treatment can potentially reduce the risk of blindness in diabetic retinopathy sufferers. Using retinal Fundus images, diabetic retinopathy can be diagnosed, recognized, and treated. In the current state of the art, sensitivity and specificity are lacking. However, there are still a number of problems to be solved in state-of-the-art techniques like performance, accuracy, and being able to identify DR disease effectively with greater accuracy. In this paper, we have developed a new approach based on a combination of image processing and artificial intelligence that will meet the performance criteria for the detection of disease-causing diabetes retinopathy in Fundus images. Automatic detection of diabetic retinopathy has been proposed and has been carried out in several stages. The analysis was carried out in MATLAB using software-based simulation, and the results were then compared with those of expert ophthalmologists to verify their accuracy. Different types of diabetic retinopathy are represented in the experimental evaluation, including exudates, micro-aneurysms, and retinal hemorrhages. The detection accuracies shown by the experiments are greater than 98.80 percent.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in artificial intelligence-assisted endocrinology and diabetes;Exploration of Endocrine and Metabolic Disease;2023-11-23

2. Brain Tumor Localization Using N-Cut;International Journal of Online and Biomedical Engineering (iJOE);2023-10-25

3. Hybrid generative model for grading the severity of diabetic retinopathy images;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2023-10-15

4. A Lightweight Diabetic Retinopathy Detection Model Using a Deep-Learning Technique;Diagnostics;2023-10-03

5. U-Net-based gannet sine cosine algorithm enabled lesion segmentation and deep CNN for diabetic retinopathy classification;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2023-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3