Author:
Al-hazaimeh Obaida M.,Abu-Ein Ashraf,Tahat Nedal,Al-Smadi Ma’moun,Al-Nawashi Malek
Abstract
Retinopathy is an eye disease caused by diabetes, and early detection and treatment can potentially reduce the risk of blindness in diabetic retinopathy sufferers. Using retinal Fundus images, diabetic retinopathy can be diagnosed, recognized, and treated. In the current state of the art, sensitivity and specificity are lacking. However, there are still a number of problems to be solved in state-of-the-art techniques like performance, accuracy, and being able to identify DR disease effectively with greater accuracy. In this paper, we have developed a new approach based on a combination of image processing and artificial intelligence that will meet the performance criteria for the detection of disease-causing diabetes retinopathy in Fundus images. Automatic detection of diabetic retinopathy has been proposed and has been carried out in several stages. The analysis was carried out in MATLAB using software-based simulation, and the results were then compared with those of expert ophthalmologists to verify their accuracy. Different types of diabetic retinopathy are represented in the experimental evaluation, including exudates, micro-aneurysms, and retinal hemorrhages. The detection accuracies shown by the experiments are greater than 98.80 percent.
Publisher
International Association of Online Engineering (IAOE)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献