A Study on Data-Driven Teaching Decision Optimization of Distance Education Platforms

Author:

Zhao Lili

Abstract

Distance education requires the teachers’ teaching decisions to be innovative, thus it’s very meaningful to optimize the distance education elements, upgrade the teaching activity quality, and realize sustainable development. Existing studies generally make selections on distance education schemes based on empirical knowledge, however, since the decision parameters are often of poor time-efficient and prone to human caused errors, the efficiency and accuracy of the output decisions can hardly meet requirements. Therefore, to overcome these shortcomings, this paper aims to study the optimization of teaching decisions based on the teaching data of distance education platforms. At first, a hybrid neural network integrating the Bi-directional Long and Short Term Memory (Bi-LSTM) model and the Convolution Neural Network (CNN) was introduced into the Teaching Decision-making Optimization (TDO) model to capture the features of bi-directional time series of teaching decisions and build feature space with stronger expression ability. Then, a multi-objective TDO model was built based on fuzzy logic reasoning, which was then used to solve the problem during teaching decision-making that it’s difficult for multiple decision element combinations in distance education to meet standards at the same time. At last, experiments verified the validity and superiority of the proposed model.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3