A Remote Triggered Compound Parabolic Collector for Thermal Engineering Studies

Author:

Freeman Joshua D.,Mohankumar Umesh,Achuthan Krishnashree

Abstract

Solar thermal energy systems are one of the most cost-effective renewable energy systems in use today. Engineering students study the design of these systems with the goal of learning how to design similar systems and perform research on improving the heating efficiency and overall operations. This paper elaborates on the design, construction, testing, and validation of a solar thermal system as a remote, open instrumentation lab, using two Compound Parabolic Collector (CPC) evacuated tube collectors with separate heating media. The lab allows for comparing heat transfer rates and collector efficiencies simultaneously for two fluids that have different thermal capacities. The heat patterns could be viewed using thermal cameras to analyze the CPC design. The unique feature of the system is its facility to control the lab remotely, as the setup is interfaced with instrumentation on a web server, thereby allowing students from geographically distant areas to access and perform experiments on the CPCs. A cumbersome lab with expensive hardware and outdoor requirements is thus made easy to perform and learn from via remote access. This remote methodology and hardware and IT architectures are especially pertinent and relevant in the blended and remote learning scenarios made common by the pandemic.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3