Author:
Wang Peng,Wang Xia,Liu Xia
Abstract
Currently, audio learning resources account for a large proportion of the total online learning resources. Designing and implementing a method for optimizing and selecting audio learning resources based on big data of education will be of great significance to the recommendation of learning resources. Therefore, this paper studies a method for selecting audio learning resources based on the big data of education, with music learning as an example. First, the audio signals were converted into mel spectrograms, and accordingly, the mel-frequency cepstral coefficient features of audio learning resources were obtained. Then, on the basis of the conventional content-based audio recommendation algorithm, the established interest degree vector of target students with respect to music learning was expanded, and a collaborative filtering hybrid algorithm for audio learning resources that incorporates the interest degrees of neighbouring students was proposed, which effectively improved the accuracy and stability in the prediction of students’ interest in music learning. Finally, the experimental results verified the feasibility and prediction accuracy of the proposed algorithm.
Publisher
International Association of Online Engineering (IAOE)
Subject
General Engineering,Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献