Mobile Drone Localization in Indoor Environment Based on Passive RFID

Author:

Habaebi Mohamed Hadi,Khamis Omar Rashid,Islam Md Rafiqul

Abstract

<p class="AEEEAbstract">Radio Frequency Identification (RFID) is an information exchange technology based on RF communication. It provides solution to track and localize mobile objects in the indoor environment. Localization of mobile objects in an indoor environment garnered a significant attention due to the variety of applications needing higher degree of localization accuracy. RSS-based localization techniques are the major tools for tracking applications due to their simplicity. In this paper, a trilateration method for indoor localization is proposed. This method provides a solution for the drone tracking problem by collecting the RSS values between RFID tagged drone and reader, and estimate its location. The localization method is implemented in MATLAB by multiple readers; 4 RFID readers and 8 RFID readers. The performance of the localization method is also compared with other RFID localization previously reported in the literature. The simulation results in the case of 8 RFID readers demonstrate more accurate results than 4 RFID readers by minimizing the localization error from 0.84606 to 0.40079m. The results also indicate an improved localization performance of tracking a tagged drone in indoor environment by 42.8% when 8RFID readers are placed in the localization area.</p>

Publisher

International Association of Online Engineering (IAOE)

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision-Based UAV Detection and Localization to Indoor Positioning System;Sensors;2024-06-25

2. A novel holographic technique for RFID localization in indoor environments;Multimedia Tools and Applications;2023-09-13

3. Localization Technique Model of Ships Ad Hoc Network (SANET) Using Geographic's Database and Clustering Analysis;International Journal of Online and Biomedical Engineering (iJOE);2022-05-17

4. Holographic Multi-Reader RFID Localization Method for Static Tags;2022 8th International Conference on Control, Decision and Information Technologies (CoDIT);2022-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3