CDDM: Concept Drift Detection Model for Data Stream

Author:

Althabiti Mashail Shaeel,Abdullah Manal

Abstract

<p>Data stream is the huge amount of data generated in various fields, including financial processes, social media activities, Internet of Things applications, and many others. Such data cannot be processed through traditional data mining algorithms due to several constraints, including limited memory, data speed, and dynamic environment. Concept Drift is known as the main constraint of data stream mining, mainly in the classification task. It refers to the change in the data stream underlining distribution over time. Thus, it results in accuracy deterioration of classification models and wrong predictions. Spam emails, consumer behavior changes, and adversary activates, are examples of Concept Drift. In this paper, a Concept Drift detection model is introduced, Concept Drift Detection Model (CDDM). It monitors the accuracy of the classification model over a sliding window, assuming the decline in accuracy indicates a drift occurrence. A modification over CDDM is a weighted version of the CDDM as W-CDDM.</p><p>Both models have evaluated against two real datasets and four artificial datasets. The experimental results of abrupt drift show that CDDM, W-CDDM outperforms the other models in the dataset of 100K and 1M instances, respectively. Regarding gradual drift, the W-CDDM overtook the rest in terms of accuracy, run time, and detection delays in the dataset of 100 K instances. While in the dataset of 1M instances, CDDM has got the highest accuracy using the NB classifier. Moreover, W-CDDM achieves the highest accuracy on real datasets.</p>

Publisher

International Association of Online Engineering (IAOE)

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Intelligent Edge Dual-Structure Ensemble Method for Data Stream Detection and Releasing;IEEE Internet of Things Journal;2024-01-01

2. A Consolidated Study On Advanced Classification Techniques Used On Stream Data;2023 IEEE 11th Region 10 Humanitarian Technology Conference (R10-HTC);2023-10-16

3. Analytical Engineering for Data Stream;Journal of Computer and Communications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3